Factors Affecting Shear Heating and the Degradation of PLA

2022-07-15 22:40:44 By : Mr. falin SHI

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

In an article recently published in the open-access article Polymers, researchers investigated the effect of four factors influencing shear heating on the degradation of polylactic acid (PLA). The PLA was processed and described by its properties of thermal, rheological, and material composition. The team observed that there was no significant contribution to the PLA degradation with an increase in the shear rate and melt temperatures.

Study: Impact of Melt Processing Conditions on the Degradation of Polylactic Acid . Image Credit: icestylecg/Shutterstock.com

The concerning amount of waste generated by non-degradable polymers makes it important to utilize biodegradable and sustainable polymers, such as PLA, reducing the reliance on fossil-fuel-based resources. Although PLA shares similar mechanical properties to those of petroleum-based polymers, its biodegradability makes the melt process challenging.

PLA, a linear aliphatic thermoplastic polyester, is capable of exhibiting high strength and modulus. This could mean that PLA has the potential to substitute conventional polymers in applications such as packaging and consumer goods. However, any thermal load can cause the degradation of the PLA through random chain scission, producing lactic acid and cyclic PLA oligomers. This deteriorates its mechanical properties due to a reduction in molecular weight. In addition, PLA exhibits low ductility and toughness and poor gas barrier properties while bearing high costs.

Rheological measurements such as Fourier-transform infrared radiation (FTIR) and differential scanning calorimetry (DSC) have been used to evaluate the degradation of PLA during melt processing. The team studied PLA degradation based on the parameters affecting shear heating, such as screw speed, extruder type, and feed rate. Subsequently, changes in the melt index, zero-shear viscosity, crystallinity, and the chemical composition of the PLA were used to consider its degradation.

Screws for the TSE and QSE: (a) screw configuration 1 with kneading blocks in the mixing zone (zone 5) and (b) screw configuration 2 with only conveying elements in zone 5. Image Credit: Aldhafeeri, T et al., Polymers

In this study, researchers extruded a commercial-grade PLA using a twin-screw extruder (TSE) and a quad screw extruder (QSE). Two trials were conducted with extrusion under a specific set of parameters, and several hours of data were collected.

The degradation was evaluated with a parallel plate rheometer performing the dynamic rheological characterization at 180 ºC. The melt flow index (MFI) was measured following ASTM D1238-20, Procedure A, at a 2.16 kg load and 210 ºC. An FTIR spectrometer was used to obtain the FTIR spectra of the processed and the virgin PLA from trials 1 and 2. The thermal performance of the processed PLA was evaluated by DSC.

Melt flow index ratio (MFI/MFIo) for polylactic acid, processing the TSE and the QSE at two screw speeds and with two screw configurations. Image Credit: Aldhafeeri, T et al., Polymers

The team observed that at the speed of 400 rpm, there was only a 4 ºC temperature variance in both the extruders and screw configurations. Furthermore, an increase in screw speed exhibited a decrease in the residence time which was 20% higher for the QSE when compared to TSE. The QSE did not exhibit a substantial increase in the melt temperature with an increase in the feed rate when operated at a 400 rpm screw speed. The residence time decreased linearly.

Moreover, the virgin, as well as the processed PLA, showed a predominant viscous behavior with the loss modulus (G”) being greater than the storage modulus (G’). However, G” and G’ were higher for the TSE than the QSE. The screw configuration or the screw speed did not substantially affect G’ and G”.

Heat flow temperature curve from the first heating cycle of the unprocessed polylactic acid in the DSC. Image Credit: Aldhafeeri, T et al., Polymers

On the other hand, the complex viscosities for the processed PLA were lower than that of the virgin PLA. The processed PLA also exhibited slower relaxation times as compared to the virgin PLA. The molecular weight’s degradation was accredited to longer residence times to shear during extrusion since a negligible increase in the melt temperature was observed in the QSE. Thus, the molecular weight was observed to degrade primarily depending on the residence time, with the temperature being relatively low. Degradation mainly occurred by chain scission as there was no significant variation in the hydroxyl band for the processed PLA. The crystallinity of PLA did not change sufficiently as the residence times of the extruder were not long enough.

To summarize, the researchers assessed the impact of the TSE and the QSE on PLA degradation while the screw configuration and the screw speed constituted compounding parameters. The linear decrease in the molecular weight was attributed to the reduction in MFI and zero-shear viscosity with increasing residence time. However, PLA degradation was reduced by an increase in QSE feed rates, which decreased the residence time.

A major mechanism of the degradation of PLA was chain scission, which increased with prolonged residence times. The PLA crystallinity, however, was unaffected by the reductions in molecular weights.

Aldhafeeri, T.; Alotaibi, M.; Barry, C.F. Impact of Melt Processing Conditions on the Degradation of Polylactic Acid. Polymers 2022, 14, 2790. https://www.mdpi.com/2073-4360/14/14/2790

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Chinmay Saraf is a science writer based in Indore, India. His academic background is in mechanical engineering, and he has extensive experience in fused deposition-based additive manufacturing. His research focuses on post-processing methods for fused deposition modeling to improve mechanical and electrical properties of 3D printed parts. He has also worked on composite 3D printing, bioprinting, and food printing technologies. Chinmay holds an M.Tech. in computer-aided design and computer-aided manufacturing and is passionate about 3D printing, new product development, material science, and sustainability. He also has a keen interest in "Frugal Designs" to improve the existing engineering systems.  

Please use one of the following formats to cite this article in your essay, paper or report:

Saraf, Chinmay. (2022, July 12). Factors Affecting Shear Heating and the Degradation of PLA. AZoM. Retrieved on July 15, 2022 from https://www.azom.com/news.aspx?newsID=59534.

Saraf, Chinmay. "Factors Affecting Shear Heating and the Degradation of PLA". AZoM. 15 July 2022. <https://www.azom.com/news.aspx?newsID=59534>.

Saraf, Chinmay. "Factors Affecting Shear Heating and the Degradation of PLA". AZoM. https://www.azom.com/news.aspx?newsID=59534. (accessed July 15, 2022).

Saraf, Chinmay. 2022. Factors Affecting Shear Heating and the Degradation of PLA. AZoM, viewed 15 July 2022, https://www.azom.com/news.aspx?newsID=59534.

Do you have a review, update or anything you would like to add to this news story?

At the Advanced Materials Show in June 2022, AZoM spoke with Ben Melrose from International Syalons about the advanced materials market, Industry 4.0, and efforts to move toward net-zero.

At the Advanced Materials Show, AZoM spoke with Vig Sherrill from General Graphene about the future of graphene and how their novel production technique will lower costs to open up a whole new world of applications in the future.

In this interview, AZoM speaks with Dr. Ralf Dupont, President of Levicron, about the potential of the new (U) ASD-H25 motor spindle for semicon industries.

Discover the OTT Parsivel², a laser disdrometer that can be used to measure all precipitation types. It allows users to collect data on the size and speed of falling particles.

Environics offers stand alone permeation systems that can be used for single or multiple disposable permeation tubes.

Grabner Instruments’ MiniFlash FPA Vision Autosampler is a 12-position autosampler. It is an automated accessory designed to be used with the MINIFLASH FP Vision Analyzer.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022